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ABSTRACT 

In this paper we propose a mathematical model simulating the dynamic behaviour of 
a semi-rigid joint in order to evaluate its structural response. The joint is modelled as a 
discrete element with mass m, subjected to inertial forces and actions of connecting 
elements, considered as springs with unilateral reaction and linear elastic-perfectly 
plastic behaviour. 

Utilizing a step by step procedure and a numerical simulation we can obtain the 
force-displacement diagrams, that permit to evaluate the resistance and ductility 
capacity of the joint, taking into account also the influence of damping forces. 

INTRODUCTION 

In the design of seismic-resistant steel structures, solutions that foreseen the 
realisation of semi-rigid connections instead of rigid ones. are more and more 
widespread. Such solutions, often used because of the easy carrying out from a 
technological point of view, turn out very effective when subjected to seismic forces, as 
both theoretical analyses, extensively available in the literature, and damage analysis of 
structures owing to an earthquake, show. 

The presence of semi-rigid connections changes very much the seismic response as 
regard that one of structures with rigid joints. Semi-rigid connections, in fact, are the 
first elements in the structure showing an inelastic behaviour, as consequence, a right 
design of connection ductility makes possible to obtain better responses of structures in 
seismic areas. However, the analysis of seismic response, is very difficult, mostly 
because of the difficulties in the connection modelling. Several models are available in 
the literature, some of them are based on complex analytical relationships (Flejou, 
1994), others are defined on the basis of experimental results (Mazzolani, Faella and De 
Martino, 1984). At present it must point out the absence of design Codes, even if some 
indications in a such way come from seismic Eurocode (EC8, 1993) and from some 
seismic Codes in Japan and in USA (Astaneh-Asl, 1994). 

In the present paper, with reference to semi-rigid connections, usually used in 
buildings construction, we propose a mathematical model that permits to evaluate 
theirs dynamic response under seismic forces. In particular, the model refers to 
connections of top-and-seat angle type, that are the most widespread in the current 
technical practice and enough representative of semi-rigid connections behaviour. 
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In order to analyze the proposed model, the solution of dynamic equations in every 
field is carried out with a numerical procedure of step-by-step integration (La Tegola 
and Sara, 1970, 1971). 

A large analysis allows to determine the force-displacement law, the resistance 
capacity and the ductility of the connection, taking into account the presence of 
dissipative forces. Numerical results allow to put in evidence the influence of 
mechanical parameters on the dynamic behaviour of connections. 

DYNAMIC MODEL OF SEMI-RIGID JOLNTS 

The proposed mathematical model refers to the scheme in Fig. 1. In such scheme 
the element of inertial mass m represents the system connected by the joint, the 
couples (Mi, S1) and (m 2, S2) the connecting model, on the right and the left side 
respectively, that the joint achieves. Connecting elements, carried out with flanges and 
bolts, are considered of unilateral type because of the bolts are supposed resistant only if 
stressed by tensile forces. 

Fig. 1. Semi-rigid joint model 

Referring to that above-mentioned, the mechanical behaviour of the joint is 
characterized by the consitutive law shown in Fig. 2. In every field the dynamic 
equilibrium equation is given by the following relationship 

Fa+ Fv  + Fk = Ft. (1) 

where Fa= mam  is the inertial force of the joint with mass m, F,=cvm  the dissipative 
force, Ft=mat  the external force, Fk the spring reaction, being a,. and vm  the 

F 

Fig. 2. Constitutive law of the model 
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acceleration and velocity of the mass m, c the viscosity, at  the ground acceleration. 

In order to carry out numerical solutions, for a better understanding of the 
influence of various parameters, it is necessary to use adimensional quantities. Then 
considering 
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in which Kr=max(Ki,K2), being K1  and 1{2 the stiffness of the resistant element on the 
right and on the left respectively; uy, the first yielding displacement value of the spring 

having stiffness Kr, Fyr=uyrKr, To=27, and ui, 112, 8111, 8112, u1*, u2*  displacements, 
displacements increments and residual displacements respectively of S1  and S2 
systems. Referring to that above-mentioned and to Fig. 2, for every field, the equation (1) 
can be expressed as follows, respecting the corresponding limits of validity. 

Field OA: displacement of the mass m towards SI; elastic behaviour of the spring m1  

In this field the behaviour of the spring m1  is elastic while the spring M2 is not 
connected to the mass m. Therefore, respecting following conditions 

„, >0; V,„ >0; K,  (17„,--ii,* ).5.:F i ; 8171 =0; 81t2  =0 
the equilibrium equation (1) is given by: 

'", + 2L + Tc,(Tt,„-1-1;)=71, 
To  

Field AB: displacement of the mass m towards SI; plastic behaviour of the spring m1  

In this stage, got over the elastic limit, the behaviour of the spring M1  is of plastic type 

while the spring m2 is not connected to the mass m. Therefore we obtain 

Tim  >0; v,,,>0; = + —tL; 
K, 

and the equation (1) is given by 

+ 24 v + F 
T; To  

Field
0 

Field BC: displacement of the mass m towards S2; elastic discharge of the spring MI. 

At the generic point B, a change of displacement direction of the mass m produces 
the elastic discharge of the spring MI; the spring M 2  is not yet connected to the mass 
m. Resulting then 

„, >0; 7„, <0; 1? 1 („,--77,)T yi ; &, =0;  &7,_ =0 
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the equation (1) is the following: 
"5„, , —+z;—+K, =a-, (17'" ) T 2  0 0 

Field COF: displacement of the mass m towards S2 without spring reaction 

In this situation both springs are not connected to the mass m; for this reason the 
mass m slips in the displacement direction until the connection of the spring M2 
Conditions are: 

Tz„, >0; V„, <0; um  —te ; 81.7. =0; bsri2=0 

Ti„, <0; 17,„ <0; (um  -u,) ?_0; 1 8ri,=0 
while the (1) is expressed as: 

(field CO) 

(field OF) 

(7 _ „, — + 2; — =a, 
7" 

Field OD: displacement of the mass m towards S2; elastic behaviour of the spring m2. 

In this case the spring M 2  is connected to the mass m ; it presents an elastic 
behaviour while the springrn i  is not connected. Conditions are the following: 

Ii„, <0; V„, <0; K2  (M,„ .-14) Ty, ; =0; =0 
and the equation (1) is expressed as: 

+21;=+K, ,,, -u_ =a, 
T8 T o  

Field DE: displacement of the mass m towards S2; elastic behaviour of the spring m2 

In this situation one obtain 

Tt <0; 7 <0; % 11,=-Cr +i.7—" 
, 

; 3171 =0 
2 

 

and the equation (1) is expressed as: 
-

T
_ + + =a, 

T 20 T o  
Field EF: displacement of the mass m towards Si; elastic discharge of the spring m2. 

Conditions that describe this stage are: 
<0; v„, >0; TC, (if; --it2 )7),2 ; Su, =0 ; 2 =0 

and the equation (1) is expressed as: 
an, vn — + 2

T
— + K, „, — 2 )= 

0 

Field FOC: displacementoof the mass m towards Si without reaction of the springs 
Considering following conditions: 
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IT  u",„, <0; 1-5-„, >0;
F, 

u", 8-a2 =0 (field FO) 
K 2  

„, <0; 17„, >0; (17.„, —77.1*)50; brt, =0 ; 6172 =0 (field OC) 
and the equation (1) is expressed as: 

_ 
=a, 

T, 

With reference to the external force and initial conditions, the solution of the 
equation of dynamic equilibrium (1), is obtained by an incremental procedure defined by 
others authors (La Tegola and Sara, 1970,1971). If t(i)=0)-0-1) represents the time 
interval corresponding to the i-th step and t-(i) = 'cm/Tr its adimensional value, being 

r= min In 
Ti =7-0 E-;T,=To  

[

T
K, 

, one obtain the following relationships: 

1 
bit" )  +2J— 87.;(" +T ' 471`" =37' )  

T '' 0 TO  
j = 1,2 (2)  

in the case of elastic behaviour of the springs 

sa-0) ±2  4 8.7 (,) =8-a,u) 
T 2o  

(3)  

in the case of plastic behaviour of the springs and when the mass m slips. 

Solutions of (2) and (3) are obtained using adequate displacement laws in the interval 
of time ¶0); in particular solutions as 

u,, =A +A , r+A 2 t2  +A ,t 3  

can be used to obtain nearly exact solutions; the Ai values, are determined considering 
limit conditions in each time interval. Using the incremental procedure above-
mentioned ( La Tegola and Sara, 1970), if um(1-1), vm(1-1), am(i-1) are initial values of 
tdisplacement, velocity and acceleration while Sum(i) is the displacement variation 
during the time interval TO), one obtain as final values, the quantities expressed as: 

3.5ti (" (") 0-0 
(,) ci) - ,,„ 1 i • 65u(I)  
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NUMERICAL APPLICATIONS 

Using incremental relationships above described, a large numerical analysis, that 
allows to describe the dynamic behaviour of semi-rigid connections, is carried out 
varying mechanical caracteristics of the connection (Ki/K2 ratio, damping coefficient 4, 
Fyi/Fy2 ratio). Figs.3 show force-displacement diagrams of the semi-rigid connection 

subjected to external forces of sinusoidal type a, sin (T 7 ) being 7 m with Af 

T, amplitude of the external force and being Tf the period of the external force. 
7', 

a ( 7=1, a=1, Af=1.5, T=3) b ( y=2, a=1, Af=1.5, T=3) 

c ( y=1.5, a=1, Af=1.5, T=3) d ( y=2, cc=1, Af=1.5, T=2) 

Fig. 3. Force -displacement diagrams of semi-rigid connections 
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Analysing diagrams one put in evidence in each cycle a behaviour of the connection 
caracterized, if the external forces exceed limit values, from plastic excurtions along 
the two directions with a relevant dissipation of energy (measured by the area included 
in each cycle). When the external force is lower than limit values the behaviour of the 
connection is elastic without dissipation of energy and, therefore, either situation can 
verify depending, obviously, from various parameters. Important parameters are the 
measurement of the external force values in comparison with the elastic limit of the 
connection and the period of the external force respect to the natural period of vibration 
of the connection. For this reason, known shape and intensity of the external force, the 
required ductility value can be defined varying rigidities and elastic limits of the above-
mentioned parameters. 

The Figs 4 and 5 show the diagrams pt.- a2=K2/Ki , being µ=umax/uy  the adimensional 
value of the ductility of the connection, varying the damping coefficient 4 for y= Fyi/Fy2  
values equal to 1 and 2 respectively. 

Fig.4. Diagrams µ-a2  (y=1)  Fig.5. Diagrams µ-a2  ('y=2) 

Diagrams show the influence of dissipative forces on the ductility values of 
connections; in particular it is possibile, for each external force, to determine a range of 
values of rigidities of the connection corresponding to high values of ductility. Besides, it 
is possible to put in evidence the opportunity to design the semi-rigid connections 
varying the damping coefficient values and then dissipative forces, to guarantee a 
ductile behaviour of the connections. 

CONCLUDING REMARKS 

On the basis of obtained results one can be put in evidence that the proposed model 
represents adeguately the dynamic behaviour of semi-rigid connections avoiding high 
analytical difficulties and it is very effective to evaluate the influence of design 
parameters which optimize the dynamic behaviour with reference to the required 
ductility values. 
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